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Cost minimization with a Cobb-Douglas Function and Second

Order Conditions

The production function of a company is of the Cobb-Douglas type f(K,L) = KαLβ where 0 < α < 1
and 0 < β < 1, K is capital and L labor (K > 0, L > 0). Suppose that the prices of capital and labor are
given by Pk > 0 and Pl > 0 respectively. Find the combination of capital and labor that minimizes the cost
when the production must be Q0 product units (Q0 > 0)
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Solution

The problem is to minimize C = KPk + LPl subject to the following constraint Q0 = KαLβ . We form the
Lagrangian:

L = KPk + LPl + λ[Q0 −KαLβ ]

The first-order conditions are:
L′
K = Pk − λαKα−1Lβ = 0

L′
L = Pl − λβKαLβ−1 = 0

L′
λ = Q0 −KαLβ = 0

From the first two equations, we solve for λ:

Pk

αKα−1Lβ
= λ

Pl

βKαLβ−1
= λ

We equate the equations:
Pk

αKα−1Lβ
=

Pl

βKαLβ−1

Pk

Pl
=

αKα−1Lβ

βKαLβ−1

This equation shows us that the first-order conditions indicate that the slopes of the isoquants must equal
while satisfying the constraint. Continuing, we solve for L:

Pk

Pl

β

α
K = L

We insert this into the third first-order constraint equation:

Q0 −Kα[
Pk

Pl

β

α
K]β = 0

Q0 −Kα+β [
Pk

Pl

β

α
]β = 0

Solving for K:

Q0[
Pl

Pk

α

β
]β = Kα+β

[
Q0[

Pl

Pk

α

β
]β
] 1

α+β

= K∗

Now we insert into the function for L:
Pk

Pl

β

α
K∗ = L

Pk

Pl

β

α

[
Q0[

Pl

Pk

α

β
]β
] 1

α+β

= L

Simplifying:

Q
1

β+α

0
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β

α

[
Pk

Pl

β

α

] −β
β+α

= L

Q
1

β+α

0

[
Pk
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β

α

] α
β+α

= L

[
Q0[

Pk
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β

α
]α
] 1

β+α

= L∗
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Now let’s solve the second-order conditions: First, we calculate the second derivatives:

L′′
KK = −λα(α− 1)Kα−2Lβ

L′′
LL = −λβ(β − 1)KαLβ−2

L′′
LK = −λβαKα−1Lβ−1

L′′
KL = −λβαKα−1Lβ−1

Now the derivatives corresponding to the bordered Hessian:

g′K = αKα−1Lβ

g′L = βKαLβ−1

To meet the second-order conditions, we construct the bordered Hessian. If we are at a minimum, the
determinant of the bordered Hessian must be negative.

H̄ =

 0 g′x g′y
g′x L′′

xx L′′
xy

g′y L′′
yx L′′

yy

 =

 0 αKα−1Lβ βKαLβ−1

αKα−1Lβ −λα(α− 1)Kα−2Lβ −λβαKα−1Lβ−1

βKαLβ−1 −λβαKα−1Lβ−1 −λβ(β − 1)KαLβ−2


Before replacing in the optimal values, we calculate the determinant of the bordered Hessian:

− αKα−1Lβ

∣∣∣∣ αKα−1Lβ βKαLβ−1

−λβαKα−1Lβ−1 −λβ(β − 1)KαLβ−2

∣∣∣∣
+ βKαLβ−1

∣∣∣∣ αKα−1Lβ βKαLβ−1

−λα(α− 1)Kα−2Lβ −λβαKα−1Lβ−1

∣∣∣∣
We calculate the first term:

−αKα−1Lβ
[
(αKα−1Lβ)(−λβ(β − 1)KαLβ−2)− (βαLβ−1)(−λβαKα−1Lβ−1)

]
Simplifying the negatives and remembering that β < 1

−αKα−1Lβ

(αKα−1Lβ)(−λβ(β − 1)︸ ︷︷ ︸
−

KαLβ−2

︸ ︷︷ ︸
+

) + (βαLβ−1)(λβαKα−1Lβ−1)


︸ ︷︷ ︸

+︸ ︷︷ ︸
−

This term is even before inserting the optimal values of K, L, or λ since these three terms at the optimum
are positive and do not affect the previous conclusion. Now we calculate the second term of the determinant:

+βKαLβ−1
[
αKα−1Lβ(−λβαKα−1Lβ−1)− βKαLβ−1(−λα(α− 1)Kα−2Lβ)

]
Simplifying the negatives:

+βKαLβ−1

−αKα−1Lβ(λβαKα−1Lβ−1)︸ ︷︷ ︸
−

+βKαLβ−1(λα(α− 1)︸ ︷︷ ︸
−

Kα−2Lβ)

︸ ︷︷ ︸
−


︸ ︷︷ ︸

−

If α − 1 < 0, then we have that the determinant of the bordered Hessian is negative, and we are at a
minimum.
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